

Results of Proficiency Test Chromium (VI) in Leather/Footwear April 2023

Organized by: Institute for Interlaboratory Studies

Spijkenisse, the Netherlands

Author: ing. C.M. Nijssen-Wester

Correctors: ing. R.J. Starink & ing. G.A. Oosterlaken-Buijs

Approved by: ing. A.S. Noordman-de Neef

Report: iis23A05

May 2023

CONTENTS

1	INTRODUCTION	. 3
2	SET UP	. 3
2.1	QUALITY SYSTEM	. 3
2.2	PROTOCOL	. 3
2.3	CONFIDENTIALITY STATEMENT	. 4
2.4	SAMPLES	. 4
2.5	ANALYZES	. 5
3	RESULTS	. 5
3.1	STATISTICS	. 5
3.2	GRAPHICS	. 6
3.3	Z-SCORES	. 7
4	EVALUATION	. 7
4.1	EVALUATION PER TEST	. 8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	. 8
4.3	COMPARISON OF THE PROFICIENCY TEST OF APRIL 2023 WITH PREVIOUS PTS	. 8
4.4	EVALUATION OF THE ANALYTICAL DETAILS	. 9
5	DISCUSSION	. 9
6	CONCLUSION	10
Anna	ndioos	
Appe 1.	ndices: Data, statistical and graphic results	11
1. 2.	Analytical details	
3.	Number of participants per country	
4.	Abbreviations and literature	21

1 Introduction

Chromium (VI) is a toxic and mutagenic substance. In the leather industry Chromium containing substances could be used in the production process. Of all Chromium compounds, primarily Chromium (VI) was used, but this has been replaced by the less hazardous Chromium (III) in most applications. The regulations for the presence of Chromium (VI) for leather continue to become stricter. But even if no Chromium (VI) is used in the production of leather, it can still be formed from Chromium (III), when production or end-use circumstances are not controlled.

Since 2014 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the determination of Chromium (VI) in Leather/Footwear every year. During the annual proficiency testing program 2022/2023 it was decided to continue the proficiency test for the determination of Chromium (VI) in Leather/Footwear.

In this interlaboratory study 156 laboratories in 34 countries registered for participation, see appendix 3 for the number of participants per country. In this report the results of the Chromium (VI) in Leather/Footwear proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send one aged vacuum sealed leather sample of 5 grams labelled #23545. The participants were asked to report the rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

A batch of red colored leather positive on Chromium (VI) was selected. The leather was grinded and aged. After homogenization about 175 plastic bags were filled with approximately 5 grams of leather, vacuumed sealed and labelled #23545. The homogeneity of the subsamples was checked by determination of Chromium (VI) in accordance with ISO17075-2 on 8 stratified randomly selected subsamples.

	Chromium (VI) in mg/kg
sample #23545-1	5.1
sample #23545-2	4.7
sample #23545-3	4.3
sample #23545-4	5.1
sample #23545-5	4.7
sample #23545-6	4.7
sample #23545-7	5.0
sample #23545-8	4.8

Table 1: homogeneity test results of subsamples #23545

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Chromium (VI) in mg/kg
r (observed)	0.7
reference test method	ISO17075-2:17
0.3 x R (reference test method)	0.9

Table 2: evaluation of the repeatability of subsamples #23545

The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one leather sample labelled #23545 was sent on March 8, 2023.

2.5 ANALYZES

The participants were requested to determine Chromium (VI) (colorimetric and/or chromatographic). To ensure homogeneity it was requested not to use less than 0.5 grams of the sample per determination. It was also requested to report if the laboratory was accredited to determine the reported component and to report some analytical details.

It was explicitly requested to treat the sample as if it was a routine sample, but not to age nor to dry the sample nor to determine volatile matter. The amount of sample was not sufficient to allow aging and/or determine the volatile matter content. Also, it was requested to keep the sample stored dark, dry, cool $(4 - 10 \, ^{\circ}\text{C})$ and vacuum packed until the start of extraction.

Furthermore, it was also requested to report the test results using the indicated units on the report form and not to round the results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by F(0.01) for the Rosner's test. Stragglers are marked by F(0.01) for the Dixon's test, by F(0.01) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{\text{(target)}} = \text{(test result - average of PT)} / \text{target standard deviation}
```

The $z_{\text{(target)}}$ scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

```
|z| < 1 good
1 < |z| < 2 satisfactory
2 < |z| < 3 questionable
3 < |z| unsatisfactory
```

4 **EVALUATION**

In this proficiency test some problems were encountered with the dispatch of the samples. Eleven participants reported test results after the final reporting date and five other participants did not report any test results. Not all participants were able to report all tests requested.

In total 151 participants reported 216 numerical test results. Observed were 5 outlying test results, which is 2.3%. In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER TEST

In this section the reported test results are discussed per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 4.

<u>Chromium (VI) (colorimetric)</u>: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ISO17075-1:17.

<u>Chromium (VI) (chromatographic)</u>: This determination was not problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ISO17075-2:17.

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from reference methods are presented in the next table.

Parameter	unit	n	average	2.8 * sd	R(lit)
Chromium (VI) (colorimetric)	mg/kg	125	5.62	2.04	2.69
Chromium (VI) (chromatographic)	mg/kg	86	5.70	1.76	3.03

Table 3: reproducibilities of tests on sample #23545

Without further statistical calculations it can be concluded that there is a good compliance of the group of participating laboratories with the reference test methods.

4.3 COMPARISON OF THE PROFICIENCY TEST OF APRIL 2023 WITH PREVIOUS PTS

	April 2023	March 2022	May 2021	May 2020	May 2019
Number of reporting laboratories	151	139	152	142	148
Number of test results	216	189	204	193	192
Number of statistical outliers	5	2	5	8	7
Percentage of statistical outliers	2.3%	1.1%	2.5%	4.1%	3.6%

Table 4: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared to uncertainties observed in PTs over the years, expressed as relative standard deviation (RSD) of the PTs, see next table.

Component	April 2023	March 2022	May 2021	May 2020	2014 - 2019	R(lit)*)
Chromium (VI) (colorimetric)	13%	15%	10%	13%	11-33%	14-18%
Chromium (VI) (chromatographic)	11%	13%	11%	14%	6-31%	9-21%

Table 5: development of the uncertainties over the years

The relative standard deviations observed in this PT are in line with the relative standard deviations observed in previous PTs.

4.4 EVALUATION OF THE ANALYTICAL DETAILS

More than 90% of the participants reported to use test method ISO17075 part 1 for colorimetric measurement or ISO17075 part 2 for the chromatographic analysis for the determination of Chromium (VI). For this PT some analytical details were requested which are listed in appendix 2. Based on the answers given by the participants the following can be summarized:

- Eighty-eight percent of the participants mentioned to be accredited for the determination of Chromium (VI) in leather.
- About ninety percent of the reporting participants used a sample intake between 1 and 2 grams.
- All participants, except one, reported to have measured a pH after extraction between pH 7 and pH 8, and thus in accordance with the test methods ISO17075-1 or ISO17075-2.

For both Chromium (VI) colorimetric and Chromium (VI) chromatographic the calculated reproducibilities are in agreement the requirements of the reference test method, therefore no separate statistical analysis has been performed.

5 DISCUSSION

As Chromium (VI) is carcinogenic, mutagenic and toxic for reproduction, the regulations within countries tend to adopt a zero-tolerance policy. In actual practice this means below the detection limit of the widely accepted test method ISO17075:2017 parts 1 and 2 of 3 mg/kg. Examples of regulations can be found in below table.

Chromium (VI)	Limit in mg/kg	Comment
OEKO-TEX® Leather	<2	Class: baby
OEKO-TEX® Leather	<200	For all other classes
EU regulation No 301/2014 amending Annex XVII to Regulation (EC) No 1907/2006 of the (REACH)	<3	Reported as dry weight only

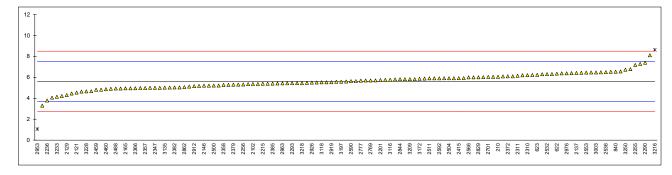
Table 6: Regulation on Chromium (VI) in leather

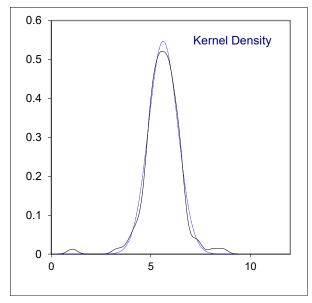
^{*)} R(lit) calculated at 5 and 25 mg/kg respectively

When the results of this interlaboratory study were compared to these limits it may be noticed that all participants, except two, would have made identical decisions about the acceptability of the leather. Almost all participants would have rejected the sample.

6 CONCLUSION

It can be concluded that the group of participants have no problems with the determination of Chromium (VI) colorimetric and chromatographic in this proficiency test. However, each laboratory will have to evaluate its performance in this study and decide about any corrective actions if necessary. Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and thus increase of the quality of the analytical results.

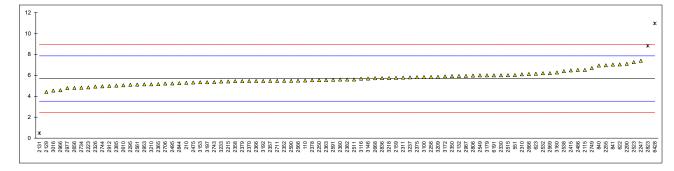

APPENDIX 1

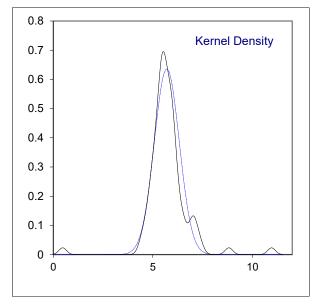

Determination of Chromium (VI) (colorimetric) in sample #23545; results in mg/kg

				#23545; results in mg/kg
lab	method	value	mark z(targ)	remarks
110 210	ISO17075-1	6.05	0.45	
523	10017075-1			
551		5.525	-0.10	
622	ISO17075-1	6.35	0.76	
623	ISO17075-1	6.24	0.65	
840	ISO17075-1	6.54	0.96	
841	ISO17075-1	6.78	1.21	
2102 2115	ISO17075-1	5.37 	-0.26 	
2113	ISO17075-1	4.548	-1.11	
2129	ISO17075-1	4.304	-1.37	
2131				
2132	ISO17075-1	5.82	0.21	
2137	ISO17075-1	6.418	0.83	
2146	ISO17075-1	5.21	-0.42	
2159 2165	ISO17075-1	5.80 4.95	0.19 -0.70	
2201	ISO17075-1 ISO17075-1	5.746	0.13	
2215	ISO17075-1	5.395	-0.23	
2223				
2228				
2230	ISO17075-1	6.19	0.60	
2232	ISO17075-1	6.525	0.94	
2236	ISO17075-1	3.796	-1.90	
2247 2250	ISO17075-1 ISO17075-1	6.23 5.435	0.64 -0.19	
2255	ISO17075-1	7.18	1.63	
2256	ISO17075-1	5.315	-0.32	
2287	ISO17075-1	5.438	-0.19	
2289	ISO17075-1	5.47	-0.15	
2290	ISO17075-1	7.4	1.86	
2291	ISO17075-1	5.88	0.27	
2293	ISO17075-1	5.436	-0.19	
2295 2310	ISO17075-1 ISO17075-1	5 6.2	-0.64 0.61	
2311	ISO17075-1	6.15	0.55	
2326	ISO17075-1	5.023	-0.62	
2330	ISO17075-1	5.761	0.15	
2347	ISO17075-1	5.0	-0.64	
2350	ISO17075-1	6.3095	0.72	
2352	ISO17075-1	4.934	-0.71	
2357 2358	ISO17075-1 ISO17075-1	4.98 5.274	-0.66 -0.36	
2363	ISO17075-1	5.033	-0.61	
2365	ISO17075-1	4.68	-0.98	
2366	ISO17075-1	4.96	-0.68	
2369	ISO17075-1	4.979	-0.67	
2370	ISO17075-1	5.18	-0.46	
2372	ISO17075-1	6.1	0.50	
2375	ISO17075-1	5.90	0.29	
2378 2379	ISO17075-1 ISO17075-1	4.951 5.300	-0.69 -0.33	
2379	ISO17075-1	5.279	-0.35 -0.35	
2382	ISO17075-1	5.03	-0.61	
2385	ISO17075-1	5.40	-0.23	
2410	ISO17075-1	7.28	1.73	
2415	ISO17075-1	5.925	0.32	
2449	10047077	4.00		
2459	ISO17075-1	4.82	-0.83	
2460	ISO17075-1	4.867 	-0.78 	
2475 2486	ISO17075-1	6.405	0.82	
2488	ISO17075-1	4.931	-0.72	
2489	ISO17075-1	6.43	0.85	
2495				
2500	ISO17075-1	5.212	-0.42	
2504	ISO17075-1	5.908	0.30	
2511	ISO17075-1	5.9	0.29	
2515 2523	ISO17075-1	6.092	0.49	
2532	ISO17075-1	6.3	0.71	
2536	ISO17075-1	6.497	0.92	
2538	ISO17075-1	5.91	0.30	

lab	method	value	mark	z(targ)	remarks
2549	ISO17075-1	5.907		0.30	
2553	In house	6.454		0.87	
2561					
2566	ISO17075-1	6.0		0.40	
2569	ISO17075-1	6.1		0.50	
2582	10047075 4	 F COF		0.04	
2590 2591	ISO17075-1 ISO17075-1	5.625 6.02		0.01 0.42	
2592	ISO17075-1	5.9018		0.42	
2605	ISO17075-1	5.42		-0.21	
2610					
2614					
2624	ISO17075-1	6.041		0.44	
2637	ISO17075-1	3.3		-2.41	
2643	ISO17075-1	5.51		-0.11	
2646	ISO17075-1	5.3514		-0.28	
2652	ISO17075-1	5.225		-0.41	
2656 2666	ISO17075-1	 6.48		0.90	
2668	ISO17075-1	5.64		0.02	
2674	ISO17075-1	4.82		-0.83	
2682	ISO17075-1	5.93		0.33	
2701	ISO17075-1	6.04		0.44	
2706					
2711					
2712	ISO17075-1	5.31		-0.32	
2734	10047075 4	 5.04			
2743	ISO17075-1	5.21		-0.42	
2744 2749	ISO17075-1	5 		-0.64 	
2751		4.45		-1.22	
2765	ISO17075-1	8.11		2.60	
2769	ISO17075-1	5.700		0.09	
2772	ISO17075-1	5.697		0.08	
2777		5.684		0.07	
2778	GB/T22807	6.383		0.80	
2806	ISO17075-1	6.298		0.71	
2823	ISO17075-1	5.578		-0.04	
2829 2836	ISO17075-1	6.005		0.40	
2844	ISO17075-1	5.818		0.21	
2849	ISO17075-1	4.218		-1.46	
2858	ISO17075-1	6.46		0.88	
2862	ISO17075-1	5.07		-0.57	
2882	ISO17075-1	5.823		0.21	
2912	ISO17075-1	5.153		-0.48	
2919	ISO17075-1	5.531	_	-0.09	
2926	ISO17075-1	5.5	C	-0.12	first reported: 2.69
2953	ISO17075-1	1.06	R(0.01)	-4.75	
2963 2966	ISO17075-1	5.425 		-0.20 	
2967					
2976	ISO17075-1	6.39		0.80	
2977					
2989	ISO17075-1	4.9001		-0.75	
2990	ISO17075-1	5.399		-0.23	
3003	ISO17075-1	6.46		0.88	
3016	10047077	 5.07			
3100	ISO17075-1	5.37		-0.26	
3116	ISO17075-1	5.774		0.16	
3118 3135	ISO17075-1 In house	5.524 5.02		-0.10 -0.62	
3146	ISO17075-1	5.711		0.10	
3153	ISO17075-1	5.12		-0.52	
3160	ISO17075-1	6.56		0.98	
3172	ISO17075-1	5.8624		0.25	
3179	ISO17075-1	6		0.40	
3192	1004505				
3197	ISO17075-1	5.58		-0.04	
3199	ISO17075-1	4.641210058		-1.02	
3209 3210	ISO17075-1	5.82 		0.21	
3210	ISO17075-1	8.62	C,R(0.01)	3.13	first reported: 9.18
3218	ISO17075-1	5.44	٠,. ١(٥.٥١)	-0.18	
3228	ISO17075-1	4.66		-1.00	
3230	In house	4.0622		-1.62	
3233	ISO17075-1	4.15		-1.53	
3237					

method	value	mark	z(targ)	remarks
ISO17075-1	5.6		-0.02	
ISO17075-1	6.73		1.16	
n armality	au an a at			
,				
outliers	2			
mean (n)	5.618			
st.dev. (n)	0.7295	RSD = 13%		
R(calc.)	2.043			
	0.9602			
R(ISO17075-1:17)	2.689			
	ISO17075-1 ISO17075-1 normality n outliers mean (n) st.dev. (n) R(calc.) st.dev.(ISO17075-1:17)	ISO17075-1 5.6 ISO17075-1 6.73 normality suspect n 125 outliers 2 mean (n) 5.618 st.dev. (n) 0.7295 R(calc.) 2.043 st.dev.(ISO17075-1:17) 0.9602	ISO17075-1 5.6 ISO17075-1 6.73 normality suspect n 125 outliers 2 mean (n) 5.618 st.dev. (n) 0.7295 RSD = 13% R(calc.) 2.043 st.dev.(ISO17075-1:17) 0.9602	ISO17075-1 5.6 -0.02 ISO17075-1 6.73 1.16 normality suspect n 125 outliers 2 mean (n) 5.618 st.dev. (n) 0.7295 RSD = 13% R(calc.) 2.043 st.dev.(ISO17075-1:17) 0.9602




Determination of Chromium (VI) (chromatographic) in sample #23545; results in mg/kg

			•		
lab	method	value	mark	z(targ)	remarks
110	ISO17075-2	5.512		-0.17	
210	ISO17075-2	5.29		-0.38	
523					
551		6.026		0.30	
622	ISO17075-2	7.04		1.24	
623	ISO17075-2	6.15		0.42	
840	ISO17075-2	6.94		1.15	
841	ISO17075-2	7.03		1.23	
2102	10017073-2	7.00			
2115	ISO17075-2	6.52		0.76	
2121	13017073-2				
2129	ISO17075-2	4.418		-1.18	
2131	In house	0.47	R(0.01)	-4.83	
			13(0.01)		
2132	ISO17075-2	5.94		0.22	
2137					
2146	10047075.0				
2159	ISO17075-2	5.75		0.05	
2165					
2201	1004-0				
2215	ISO17075-2	5.420		-0.26	
2223	In house	4.85		-0.78	
2228					
2230					
2232		not analyzed	d		
2236					
2247	ISO17075-2	7.40		1.57	
2250	ISO17075-2	5.5465		-0.14	
2255	ISO17075-2	6.96		1.16	
2256	ISO17075-2	5.842		0.13	
2287					
2289					
2290	ISO17075-2	7.1		1.29	
2291					
2293					
2295	ISO17075-2	5.1		-0.55	
2310	ISO17075-2	6.1		0.37	
2311	ISO17075-2	5.78		0.07	
2326	ISO17075-2	4.923		-0.72	
2330	ISO17075-2	6.008		0.28	
2347					
2350	ISO17075-2	5.9358		0.22	
2352	ISO17075-2	5.478		-0.20	
2357	ISO17075-2	5.47		-0.21	
2358	ISO17075-2	5.454		-0.23	
2363	ISO17075-2	5.547		-0.14	
2365	ISO17075-2	5.16		-0.50	
2366	ISO17075-2	5.46		-0.22	
2369					
2370	ISO17075-2	5.46		-0.22	
2372	100170702				
2375	ISO17075-2	5.82		0.11	
2378	ISO17075-2	5.535		-0.15	
2379	ISO17075-2	5.455		-0.13	
2379	ISO17075-2 ISO17075-2	5.599		-0.23	
2382	ISO17075-2	5.60		-0.09	
2385		5.02		-0.09	
	ISO17075-2				
2410	10047075.0	 6.470		0.71	
2415	ISO17075-2	6.470		0.71	
2449					
2459					
2460	10047075.0	 5 040			
2475	ISO17075-2	5.313		-0.36	
2486	ISO17075-2	6.517		0.75	
2488					
2489	10047075.0	 		0.40	
2495	ISO17075-2	5.23		-0.43	
2500					
2504	10047075.0	 F.C		0.00	
2511	ISO17075-2	5.6		-0.09	
2515	ISO17075-2	6.015		0.29	
2523	ISO17075-2	7.260		1.44	
2532	ISO17075-2	6.2		0.46	
2536	1004=0===				
2538	ISO17075-2	6.4		0.65	

	_	_			<u> </u>	
lab	method		alue	mark	z(targ)	remarks
2549	ISO17075-2		.000		0.28	
2553 2561	ISO17075-2		 .12		-0.54	
2566	ISO17075-2		.5		-0.18	
2569	ISO17075-2		.2		0.46	
2582						
2590	ISO17075-2		.478		-0.20	
2591	ISO17075-2		.58		-0.11	
2592 2605						
2610	ISO17075-2		.05		-0.60	
2614	100110102					
2624						
2637						
2643						
2646						
2652 2656	In house	4.	8		-0.83	
2666	ISO17075-2		.13		0.40	
2668	ISO17075-2		.72		0.02	
2674						
2682						
2701	10047075.0					
2706 2711	ISO17075-2 ISO17075-2		.220 .47		-0.44 -0.21	
2712	15017075-2		.+ <i>1</i> 		-0.21	
2734	ISO17075-2		.822		-0.81	
2743	ISO17075-2		.37		-0.30	
2744	ISO17075-2		.95		-0.69	
2749	ISO17075-2		.70		0.92	
2751 2765						
2769						
2772						
2777						
2778						
2806	ISO17075-2		.984	D(0.04)	0.26	
2823 2829	ISO17075-2		.817 	R(0.01)	2.88	
2836	ISO17075-2		 .730		0.03	
2844	ISO17075-2		.257		-0.41	
2849						
2858						
2862						
2882 2912	ISO17075-2		 .991		-0.65	
2919	15017075-2				-0.03	
2926						
2953	ISO17075-2	5.	.14		-0.52	
2963	10047075.0				4.04	
2966 2967	ISO17075-2		.575 .947		-1.04 0.23	
2976			.94 <i>1</i> 		0.23	
2977	ISO17075-2		.7848		-0.85	
2989						
2990						
3003	10047075.0		 		4.07	
3016 3100	ISO17075-2 ISO17075-2		.545 .84		-1.07 0.13	
3116	ISO17075-2		.685		-0.01	
3118						
3135						
3146	ISO17075-2		.692		-0.01	
3153	ISO17075-2		.34		-0.33	
3160 3172	ISO17075-2 ISO17075-2		.27 .894		0.53 0.18	
3172	ISO17075-2	6			0.18	
3192	ISO17075-2		.46		-0.22	
3197	ISO17075-2	5	.34		-0.33	
3199						
3209	ISO17075-2		.85		0.14	
3210 3216	In house		.144 		-0.51 	
3218	ISO17075-2		 .74		0.04	
3228	10011010-2					
3230						
3233	ISO17075-2		.41	С	-0.27	first reported: 3.68
3237	ISO17075-2	5.	.81		0.10	

lab	method	value	mark	z(targ)	remarks
3248					
3250					
6191	ISO17075-2	6.0	С	0.28	first reported: 3.4
6428	ISO17075-2	10.960	R(0.01)	4.86	•
	normality	OK			
	n	86			
	outliers	3			
	mean (n)	5.700			
	st.dev. (n)	0.6275	RSD = 11%		
	R(calc.)	1.757			
	st.dev.(ISO17075-2:17)	1.0826			
	R(ISO17075-2:17)	3.031			

APPENDIX 2 Analytical details

110 Yes 201g	accr	O/IEC 17025 sam credited		H before extraction	pH after extraction
210 Yes 2g			g 8		9
Section					
Company					<u> </u>
Duplo: 2,0028 g Quality control: 1,0019 g					
623 Yes 1g 8.0 7.64 840 Yes 1g 8.0 7.64 841 Yes 2g 8.0 7.8 2102 No 2 gram 7.96 7.75 2115 Yes 2g 8 7.77 2121 Yes 2g 8 7.7 2129 Yes 0,8 g 7.93 7.93 2131 No 2 2132 Yes 2 8.0 7.7 2132 Yes 1 8 7.6 2146 No about 2 g 8.0 7.7 2137 Yes 1 8.0 7.7 2146 No about 2 g 8.0 7.7 2159 Yes 1 8.0 7.9 2215 Yes 1.0g 8.0 7.5 2221 Yes 1.009g 8.0 7.5 2223 Y	Yes	Dup	lo: 2.0028 g	.98	7.66
840 Yes 2g 8.0 7.64 841 Yes 2g 8.0 7.8 2102 No 2 gram 7.96 7.75 2115 Yes 2 g 8 7.77 2121 Yes 2 g 8 7.7 2129 Yes 0.8 g 7.93 7.93 2131 No 2	3 Yes			.99	7.71
2102 No) Yes	s 1g	8	3.0	7.64
2115 Yes 2 g 8 7,7 2121 Yes 2g 8 7,7 2129 Yes 0,8 g 7,93 7,93 2131 No 2 2132 Yes 2 8.0 7,7 2137 Yes 1 8 7,6 2146 No about 2 g 8,0 8,0 2159 Yes 1 8,0 7,9 2165 Yes 1.0g 8.0 7,7 2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2223 Yes 1.0219g 8.0 7.5 2223 Yes 2 8.0 7.5 2230 Yes 1.0219g 8.0 7.64 2230 Yes 2.0114 7.97 7.96 2247	Yes				7.8
2121 Yes		2 gr	am 7	.96	7.75
2129 Yes 0,8 g 7,93 7,93 7,93 2131 No 2 2132 Yes 2 2 8.0 7.7 2137 Yes 1 8 7.6 2146 No about 2 g 8,0 8,0 8,0 2159 Yes 1 8,0 7,9 2165 Yes 1.0g 8.0 7.7 2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2223 Yes 2 8 7.5 2223 Yes 2 8 7.5 2232 Yes 2.0018 8.0 7.5 2232 Yes 2.0018 8.0 7.64 2236 Yes 2.0114 7.97 7.96 2247 Yes 2.018 8.0 7.8 2250 Yes 2.019 8.0 7.8 2255 Yes 2.0 g 8.0 7.7 7.96 2247 Yes 2.0 g 8.0 7.7 7.96 2247 Yes 2.0 g 8.0 7.7 7.96 2247 Yes 2.0 g 8.0 7.7 7.96 2255 Yes 2.0 g 8.0 7.7 7.9 2255 Yes 2.0 g 8.0 7.7 2255 Yes 2.0 g 8.0 7.9 2256 Yes 2.0 g 8.0 7.9 2257 Yes 2.0 g 8.0 7.9 2259 Yes 2.0 g 8.0 7.9 7.7 2255 2256 Yes 2.0 g 8.0 7.9 2255 2256 Yes 2.0 g 7.5					
2131 No 2 2132 Yes 2 8.0 7.6 2146 No about 2 g 8,0 8,0 2159 Yes 1 8,0 7,9 2165 Yes 1.0g 8.0 7,7 2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2223 Yes 1.0219g 8.0 7.5 2232 Yes 2.0018 8.00 7.5 2232 Yes 2.0018 8.00 7.64 2232 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.8 2250 Yes 2.0 g 8,0 7.9 2255 Yes 1.0 8.0 7.9 2256 Yes 1.0 8.0 7.9		s 2g			
2132 Yes 2 8.0 7.7 2137 Yes 1 8 7.6 2146 No about 2 g 8.0 8.0 2159 Yes 1 8,0 7.9 2165 Yes 1.0g 8.0 7.7 2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2228 2230 Yes 2.0018 8.0 7.5 2232 Yes 2.0114 7.97 7.96 2247 Yes 2.0g 8.0 7.8 2250 Yes 2.0 g 8.0 7.9 2255 Yes 1.0 8.0 7.9 2255 Yes 1.0 8.0 7.9 2256 Yes 1.0 8.0 8.0 2					
2137 Yes 1 8 7.6 2146 No about 2 g 8,0 8,0 2159 Yes 1 8,0 7,9 2165 Yes 1.0g 8.0 7.7 2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2228 2230 Yes 1.0219g 8.0 7.5 2232 Yes 2.0018 8.00 7.6 2232 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.8 2250 Yes 2.0 g 8.0 7.7 2255 Yes 1.0 8.0 7.7 2255 Yes 1.0 8.0 7.7 2287 Yes 1.0 8.0 7.9					
2146 No about 2 g 8,0 8,0 2159 Yes 1 8,0 7,9 2165 Yes 1.0g 8.0 7,7 2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2223 Yes 2 8 7.5 2230 Yes 1.0219g 8.0 7.5 2231 Yes 2.0018 8.00 7.5 2232 Yes 2.0018 8.00 7.64 2236 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.7 2255 Yes 1.0 8.0 7.7 2255 Yes 1.0 8.0 7.7 2257 Yes 1.0g 2287 Yes 1.0g 8.0 7.075-1: 8.023 <t< th=""><th></th><td></td><td></td><td></td><td></td></t<>					
2159 Yes 1 8,0 7,9 2165 Yes 1.0g 8.0 7.7 2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2228					
2165 Yes 1.0g 8.0 7.7					
2201 Yes 1.0127 g pH=7.91 pH=7.68 2215 Yes 1.0009g 8.0 7.5 2223 Yes 2 8 7.5 2228 2230 Yes 1.0219g 8.0 7.5 2232 Yes 2.0018 8.00 7.64 2236 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.8 2250 Yes 2,0 g 8,0 7.7 2255 Yes 1.0 8.0 7.9 2256 Yes 1SO 17075-1: 1.0052g ISO 17075-1: 8.023 ISO 17075-1: 8.023 2287 Yes 1.0g 2287 Yes 1.9 8.0 7.9 1.705-1: 8.023 ISO 17075-1: 8.023 <td< th=""><th></th><td></td><td></td><td><i>'</i></td><td></td></td<>				<i>'</i>	
2215 Yes 2 8 7.5 2228 2230 Yes 1.0219g 8.0 7.5 2232 Yes 2.0018 8.00 7.64 2236 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.8 2250 Yes 2.0 g 8.0 7.7 2255 Yes 1.0 8.0 7.9 2256 Yes 1.0 8.0 7.9 2257 Yes 1.0 8.0 7.9 2256 Yes 1.0 8.0 7.9 2257 Yes 1.0 8.0 7.9 2287 Yes 1.0 8.0 7.9 2287 Yes 1.0 8.0 7.9 2287 Yes 1.0 8.0 8.0 2291 Yes 1.2007g and 1.0702g 8.00 7.98 2293					
2223 Yes 2 8 7.5 2228 2330 Yes 1.0219g 8.0 7.5 2232 Yes 2.0018 8.00 7.64 2236 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.8 2250 Yes 2.0 g 8.0 7.9 2255 Yes 2.0 g 8.0 7.9 2255 Yes 1.0 8.0 7.9 2256 Yes 1.0 8.0 7.9 2256 Yes 1.0 8.0 7.9 2256 Yes 1.0 8.0 7.9 2257 Yes 1.0 8.0 7.9 2257 Yes 1.0g 2287 Yes 1.0g 8.0 7.98 2290 Yes 2.02 8.00 7.98 2295 Ye					
2228 2230 Yes 1.0219g 8.0 7.5 2232 Yes 2.0018 8.00 7.5 2236 Yes 2.0114 7.97 7.96 2247 Yes 2.00g 8.0 7.8 7.96 2247 Yes 2.00g 8.0 7.7 7.96 7.9 2255 Yes 1.0 8.0 7.9 7.9 7.9 2256 Yes 1.0 8.0 7.9 7.9 7.95 1.00 1.00 1.00 1.00 1.00 7.99 7.71 7.99 <					
2230 Yes 1.0219g 8.0 7.5 2232 Yes 2.0018 8.00 7.64 2236 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.8 2250 Yes 2,0 g 8.0 7.7 2255 Yes 1.0 8.0 7.9 2256 Yes ISO 17075-1: 1.0052g ISO 17075-1: 8.023 ISO 17075-1: 8.023 2287 Yes 1.0g 2289 Yes 1g 8.0 8.0 2289 Yes 1g 8.0 8.0 2290 Yes 2291 Yes 1.2007g and 1.0702g 8.00 7.98 2293 Yes 2.02 8.00 7.68 2295 Yes 2 grams 8 pH 8 pH 2310 Yes 2 2 s 7.8 2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1g 8.0 7.7					
2232 Yes 2.0018 8.00 7.64 2236 Yes 2.0114 7.97 7.96 2247 Yes 2gm 8.0 7.8 2250 Yes 2.0 g 8.0 7.7 2255 Yes 1.0 8.0 7.9 2256 Yes ISO 17075-1: 1.0052g ISO 17075-1: 8.023 ISO 17075		s 1.02	19g 8	3.0	7.5
2247 Yes 2gm 8.0 7.8 2250 Yes 2,0 g 8,0 7,7 2255 Yes 1.0 8.0 7.9 2256 Yes ISO 17075-1: 1.0052g ISO 17075-1: 8.023 ISO 17075-1: 8.02					
2250 Yes 2,0 g 8,0 7,7 2255 Yes 1.0 8.0 7.9 2256 Yes ISO 17075-1: 1.0052g ISO 17075-1: 8.023 ISO 17075-1: 8.0	Yes	s 2.01	14 7	.97	7.96
2255 Yes 1.0 8.0 7.9 2256 Yes ISO 17075-1: 1.0052g ISO 17075-1: 8.023 ISO 17075-2: 8.002 7.98 8.0 7.98 2310 7.98 2310 7.88 232 17.88 2311 Yes 1 8.0 7.7 7.88 2330 Yes 1 1 8.0 7.9 7					
SO 17075-1: 1.0052g ISO 17075-1: 8.023 ISO 17075-2: 8.002 ISO 17		s 2,0 g			
ISO 17075-2: 1.0040g					
2289 Yes 1g 8.0 8.0 2290 Yes 2291 Yes 1.2007g and 1.0702g 8.00 7.98 2293 Yes 2.02 8.00 7.68 2295 Yes 2 grams 8 pH 8 pH 2310 Yes 2 8 7.8 2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2369 Yes 2.0g 7.99 7.71 2369 Yes 1g 2370 Yes 0.5 g		ISO	17075-2: 1.0040g	SO 17075-2: 8.002	ISO 17075-1: 7.812 ISO 17075-2: 7.731
2290 Yes 2291 Yes 1.2007g and 1.0702g 8.00 7.98 2293 Yes 2.02 8.00 7.68 2295 Yes 2 grams 8 pH 8 pH 2310 Yes 2 8 7.8 2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2360 Yes 1g 2369 Yes 1g 2369 Yes 1g 2370 Yes 0.5 g					
2291 Yes 1.2007g and 1.0702g 8.00 7.98 2293 Yes 2.02 8.00 7.68 2295 Yes 2 grams 8 pH 8 pH 2310 Yes 2 8 7.8 2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2369 Yes 1g 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g					
2293 Yes 2.02 8.00 7.68 2295 Yes 2 grams 8 pH 8 pH 2310 Yes 2 8 7.8 2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2295 Yes 2 grams 8 pH 8 pH 2310 Yes 2 8 7.8 2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 1g 2369 Yes 1g 2370 Yes 0.5 g pH 7.99 pH 7.66 <td< th=""><th></th><td></td><td></td><td></td><td></td></td<>					
2310 Yes 2 8 7.8 2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2311 Yes 1 8 7.8 2326 Yes 2.0008 8.01 7.68 2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2330 Yes 1 g 8.0 7.7 2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537	Yes	s 1	8		7.8
2347 Yes 1g 8.0 7.9 2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537) Yes	s 2.00	08 8	3.01	7.68
2350 Yes 2.0048g pH 7.96 pH 7.5 2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537		U			
2352 Yes 1.0027g 8.0 7.9 2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537		s 1g	8	3.0	7.9
2357 Yes 2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537			48g p		
2358 Yes 2.0 7.9 7.7 2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2363 Yes 2g 8 7-8 2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2365 Yes 2.0g 7.99 7.71 2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2366 Yes 1g 2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2369 Yes 2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2370 Yes 0.5 g pH 7.99 pH 7.66 2372 Yes 2g 7.929 7.537					
2372 Yes 2g 7.929 7.537					
2375 Yes 1 gram 8.0 7.8					
2378 Yes 2g 8.0 7.8	3 Yes	s 2g	8	3.0	7.8
2379 Yes 1 g/50 ml pH= 8.00 pH= 7.92) Yes				
2380 Yes 1.0 g 8.0 7.7					
2382 Yes 1g 8.05 7.98					
2385 Yes 1 g 8,0 7,8					
2410 Yes 1 g 8.0 7.8					
2415 Yes 1 GRAM PH = 8.0 PH = 7.8					
2449 Yes 1.02g 8.0 7.72 2459					
2460 Yes 2 g 8.01 7.68					
2475 No 1.002 8 7.5					
					7.9
2486 Yes 1 0081 8 7 9					
) Yes				
2488 Yes 2 7.62 8.01	Yes	s 1			

lab	ISO/IEC 17025 accredited	sample intake (g)	pH before extraction	pH after extraction
2504	Yes	1 gram	8.04	7.77
2511		2 g	9.023	7.986
2515	Yes	About 1 g	8.0	7.80
2523	Yes	1.5 grams.	8.0	7.69
2532	Yes	1 gram	8.0	7.81
2536	Yes	1.0004	8.0	7.9
2538	Yes	2/2/1 g	8,00 / 8,00 / 8,00	7,70 / 7,70 / 7,68
2549	Yes	2 grams	8.04	7.75
2553	Yes	1.0005	7.96	7.90
2561 2566	Yes Yes	2g	8.01	7.92
2569	Yes	1.0089gm 1 gm	8	7.92 7.7
2582				
2590	Yes	1g	7.50	7.37
2591	Yes	2.0 grams		
2592	Yes	2	7.96	7.69
2605	Yes	4.0g	8.02	7.63
2610	Yes	2.0142	8.00	7.71
2614				
2624	No	1,999	8,02	7,88
2637				
2643	Yes	1 g	8.0	8.0
2646	Yes	2	8,066	7,62
2652	Yes	1.0052	8.0	7.8
2656	No	1 gram	8	not measured
2666		4.0	7.00	7.00
2668	Yes	1.0 gms	7.66	7.63
2674	Yes	1g	8.05	7.84
2682	Yes	2.001 gram	7.92	8.02
2701 2706	No Yes	5 g 2	8.01	7.92 7.8
2711	No Tes	1g	8.0 7.98	1.0
2712	Yes	2.0010 g	7.72	7.72
2734	Yes	4g	8,00	7,65
2743	Yes	1g	8,0	7,8
2744	Yes	2	8	7,60
2749		2 x 1 g	8.0	Zwischen 7 und 8
2751	Yes	2,0006		7,51
2765	Yes	2 g	8.0	7.7
2769	Yes	2,003	8,04	7,72
2772	Yes	5 grams	pH:8.03	pH:7.93
2777	Yes	1 gram	pH 8	pH 7.8
2778	No	4g	8.0±0.1	7.5
2806	Yes	About 2,0 gram		
2823	No	2.0168g.	pH7.99.	pH7.68.
2829	Yes	2.01 g	8.00	7.64
2836	No	About 1.000g	pH= 8.0 +/- 0.1	pH= 7.67
2844	Yes	2.0085 2.0058	8.02	7.67
2849 2858	Yes Yes	2,00049 2.0 gm	8,02 7.99	7,56 7.66
2862	Yes	2.0 gm 2 x 1q	not determined	7.80
2882	Yes	2.003 GRAMS	8.00	7.61
2912	Yes	2.003 GRAINS	7.97	
2919	No	2g	8,096	7,7
2926	No	2g	8,0	7,702
2953	Yes	1 grams	8.04	7.78
2963	Yes	1.0020g	8.02	7.79
2966	Yes	2,009	8,00	7,95
2967	No	2	8.07	7.77
2976	Yes	2.00g	8.00	7.86
2977	Yes	1g	8,01	8,01
2989	No	2gm	7.58	7.51
2990	Yes	1.0321g	8.0	7.7
3003				
3016	No	I 1,0023 g, II 1,5050 g	8,00	I 7,80 II 7,74
0.100	V	III 1,9947 g, IV 0,8719 g	7.00	III 7,7 IV 7,86
3100	Yes	2g	7.98	7.73
3116	Yes	1	7.9	7.6
3118	Yes	0.5	7.95	7.76
3135 3146	Yes Yes	Appr. 2 g One time 1.0020 g	8.00 pH 8.0	7.69 pH 7.0 - 8.0
5140	1 69	One time 1.0020 g One time 2.0052 g and	μιι σ.σ	μιιι.υ - ο.υ
		One time 2.0059 g		

lab	ISO/IEC 17025 accredited	sample intake (g)	pH before extraction	pH after extraction
3153	Yes	0.5 gram	7.56	7.45
3160	Yes	1g/50 ml buffer	8.00	7.8
3172	Yes	1	8.00	7.68
3179	Yes	2g		
3192	Yes	2g	8,0	7,6
3197	Yes	2g	8.00	7.67
3199	Yes	1.0124	7.94	7.77
3209	Yes	1g	7.9	7.9
3210	Yes	1.0044	8.03	7.76
3216	Yes	1st replicated=2,0044g / 2nd replicated=2,0014g	pH=8,00	pH=7,99
3218	Yes	2g	8.06	7.77
3228	Yes	2.0	7.8	7.0-8.0
3230	Yes	Duplicate analysis: 2.0244g/2.0160g	8.10	7.90
3233	No	1.0672	8	8.01
3237	Yes	2 gr	8,00	7,41
3248	Yes	2.0083 g	8.0	7.9
3250	Yes	1.0021	8.001	8.002
6191	Yes	2,0114 g	8,0	7,7
6428	Yes	1,955	8,05	7,8

APPENDIX 3

Number of participants per country

- 1 lab in AUSTRIA
- 6 labs in BANGLADESH
- 2 labs in BRAZIL
- 2 labs in CAMBODIA
- 1 lab in CYPRUS
- 1 lab in FINLAND
- 8 labs in FRANCE
- 10 labs in GERMANY
 - 1 lab in GUATEMALA
- 7 labs in HONG KONG
- 10 labs in INDIA
- 3 labs in INDONESIA
- 17 labs in ITALY
 - 1 lab in JAPAN
- 5 labs in KOREA, Republic of
- 1 lab in MAURITIUS
- 3 labs in MEXICO
- 1 lab in MOROCCO
- 25 labs in P.R. of CHINA
- 6 labs in PAKISTAN
- 3 labs in POLAND
- 1 lab in PORTUGAL
- 1 lab in SINGAPORE
- 5 labs in SPAIN
- 2 labs in SRI LANKA
- 4 labs in SWITZERLAND
- 6 labs in TAIWAN
- 2 labs in THAILAND
- 1 lab in THE NETHERLANDS
- 1 lab in TUNISIA
- 8 labs in TURKEY
- 3 labs in U.S.A.
- 2 labs in UNITED KINGDOM
- 6 labs in VIETNAM

APPENDIX 4

Abbreviations

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test D(0.05) = straggler in Dixon's outlier test D(0.01) = outlier in Grubbs' outlier test D(0.05) = straggler in Grubbs' outlier test D(0.05) = outlier in Double Grubbs' outlier test D(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test

E = calculation difference between reported test result and result calculated by iis

W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation

n.a. = not applicable
n.e. = not evaluated
n.d. = not detected
fr. = first reported

f+? = possibly a false positive test result? f-? = possibly a false negative test result?

SDS = Safety Data Sheet

Literature

- iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, 79.3, 589-621, (1996)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), 165-172, (1983)